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Abstract
A model of state reduction in relativistic quantum field theory involving a
nonlinear stochastic extension of Schrödinger’s equation is outlined. The
eigenstates of the annihilation operator are chosen as the preferred basis onto
which reduction occurs. These are the coherent states which saturate the bound
of the Heisenberg uncertainty relation, exhibiting classical-like behaviour.
The quantum harmonic oscillator is studied in detail before generalizing to
relativistic scalar quantum field theory. The infinite rates of increase in energy
density which have plagued recent relativistic proposals of dynamical state
reduction are absent in this model. This is because the state evolution equation
does not drive particle creation from the vacuum. The model requires the
specification of a preferred sequence of space-like hyper-surfaces supporting
the time-like state evolution. However, it is shown that the choice of preferred
surfaces has no effect on perturbative results to second order in the coupling
parameter. It is demonstrated how state reduction to a charge density basis can
be induced in fermionic matter via an appropriate coupling to a bosonic field
undergoing this mechanism.

PACS numbers: 03.65.Ta, 11.10.−z

1. Introduction

Much of the peculiar behaviour associated with quantum physics results from the fact that,
although a quantum system can be in a superposition of different states, whenever we make
measurements involving macroscopic apparatus, a definite state is always registered. The
transition from a superposition to a definite state is not described by Schrödinger’s equation.
How then, if the constituents of the apparatus are also described by Schrödinger’s equation,
does this quantum state reduction come about?

Stochastic generalizations of Schrödinger’s equation have been proposed by a number of
authors in answer to the problem of measurement [1–5] (for a review see [6, 7]). The key
idea is that measurement is understood as the realization of a random process in the Hilbert
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space of state vectors where unwanted superpositions of states are unstable. The appeal of
these models rests on two fundamental properties: (i) they reproduce quantum effects on small
scales with negligible modification to standard quantum theory, and (ii) they lead to rapid,
objective state vector collapse on large scales with probabilities given by the laws of standard
quantum mechanics. The result is that superpositions of states for macroscopic objects are
suppressed whilst individual particles continue to behave according to quantum theory.

The usual approach is to substitute Schrödinger’s equation with a quantum state diffusion
equation of the form

d|φt 〉 = (Cdt + A · dXt ) |φt 〉. (1)

Here {Xt } is a (vector-valued) Itô process and A, C are operators (the Schrödinger equation
can be recovered by setting C = −iH and A = 0). With appropriate choices for the drift and
volatility of {Xt } the quantum state typically evolves into an eigenstate of the operator A. The
choice of A leads to a preferred basis. In the quantum-mechanical case, the standard choice is
a locally averaged position state basis in order to reproduce the definite localization of objects
at the classical scale. Another idea is to use an energy state basis [8–10]. These models
have the desirable property that energy is conserved in expectation. A general solution to the
energy-based state diffusion with time-dependent coupling has recently been found [11].

At present, non-relativistic proposals are seen to have sufficiently negligible effects
on the quantum scale in order to be indistinguishable from standard quantum theory for
current experimental technologies [12]. At the same time these proposals offer a consistent
understanding of classical and quantum domains. However, so far, relativistic field theoretic
formulations generally predict an infinite rate of particle creation due to the coupling of a
classical stochastic field to a quantum scalar field [6, 13–15]. Some previous attempts to
resolve this problem have involved modifying the stochastic field to prevent high-energy
excitations [7, 16], or coupling the noise source not locally to the quantum field but to the
integral of quantum fields over some spacetime region [17]. A quantum-mechanical model
for a relativistic particle has been developed in [18] although this model does not include
interactions.

In this paper, we outline an alternative proposal in which the stochastic field is coupled
only to the annihilation operators of the quantum scalar field (via a local interaction term). The
scalar field cannot then be excited by the stochastic field. As a consequence, the infinite rates
of energy increase are avoided. Instead we see an expected energy loss to the stochastic field
which can be controlled to a negligibly small level by an appropriate choice for the coupling
parameter. A related idea has been employed in [19] to control energy increase in models of
non-relativistic state reduction.

We find that in order to construct a satisfactory model of state reduction in relativistic
quantum field theory, we must assume a preferred sequence of space-like hyper-surfaces
supporting the evolution of the quantum state. The reason is that the stochastic field is coupled
to local operators which do not commute at space-like separation. The state evolution equation
is therefore path dependent. The fixed sequence of space-like hyper-surfaces constrains the
evolution such that only one path is possible, ensuring a well-defined evolving state. We do
not propose a rule for how the surfaces are chosen and regard them as a hidden property of the
state.

Our state evolution equations are of relativistically invariant form so that all observers
will agree on outcomes. However, the choice of surface is responsible for identifying a
preferentially selected local frame. The idea that dynamical reduction models might break
Lorentz invariance in this way has been suggested before by Pearle [20], who considered
a stochastic field coupled to a generalized mass–density field which does not commute at
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space-like separation. There it was shown that the commutator decays on a length scale
corresponding to the particle’s Compton wavelength, providing a sense in which the model is
quasi-relativistic.

By performing perturbative calculations involving an expansion in the coupling parameter,
we are able to quantify the effect of a particular choice of the space-like hyper-surfaces. We
find that the choice has no effect on the lowest order expressions describing state reduction.
This offers an alternative way to understand the quasi-relativistic nature of this type of model.

We will see that the quantum state evolves towards the eigenstates of the annihilation
operators. In quantum mechanics these are well understood as coherent states (see e.g. [21]).
The coherent states have long been regarded as a close quantum approximation to idealized
classical states and therefore constitute a natural choice for the preferred basis states in a
quantum state reduction model.

The paper is organized as follows. In section 2, we demonstrate the state reduction
mechanism for the simple case of a quantum harmonic oscillator. By analysing the quantum
variance processes we are able to demonstrate that state reduction occurs, and to estimate
the associated reduction timescale. We also examine how the expectation of energy evolves
and demonstrate that initial quantum probabilities match with the probabilities of stochastic
outcomes in a simple example. We conclude the section with some numerical results which
confirm our analysis.

In section 3, we extend the formalism to a relativistic quantum scalar field. We adopt the
interaction picture of Tomonaga and Schwinger [22, 23] to describe a state defined on some
space-like hyper-surface evolving in a time-like manner. Once we have examined this picture
in detail, we proceed to demonstrate the reductive properties. We show how this mechanism
of state reduction for a bosonic field could induce a state reduction to some charge state basis
in a fermionic field. We end in section 4 with some concluding remarks.

2. Quantum-mechanical harmonic oscillator

The device we shall use to represent quantum state reduction will be presented for the case
of (0 + 1)-dimensional scalar field theory, i.e. the quantum-mechanical harmonic oscillator.
The commutation relation between position and momentum is given by [x, p] = i. We define
creation and annihilation operators in the standard way as follows:


a =

√
ω

2
(x + ipω−1)

a† =
√

ω

2
(x − ipω−1)

⇔




x = 1√
2ω

(a + a†)

p = −i

√
ω

2
(a − a†).

(2)

These operators satisfy the commutation relation [a, a†] = 1. The Hamiltonian for the
harmonic oscillator is given by

H = 1
2p2 + 1

2ω2x2 = ω
(
a†a + 1

2

) = ω
(
N + 1

2

)
, (3)

where N = a†a is the particle number operator. Units are chosen such that h̄ = 1 for the sake
of simplicity.

The Schrödinger equation expressed in a differential form is d|ψt 〉 = −iH |ψt 〉 dt . We
extend this in the following way

d|ψt 〉 = {[−iH − 1
2λ2(a† − āt )a + 1

2λ2(a − āt )āt

]
dt + λ(a − āt ) dBt

} |ψt 〉, (4)

where

āt = 1
2 〈ψt |(a + a†)|ψt 〉, (5)
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and λ is a constant parameter of dimension [time]−1/2. Denoting unconditional expectation
with respect to the physical probability measure P by EP[·], the differential dBt is an
increment of real P-Brownian motion with the properties that EP[dBt ] = 0, (dBt)

2 = dt ,
and increments at different times are independent. Equation (4) can be derived (see [6]) by
first assuming a state evolution equation of the form d|φt 〉 = (C dt + λa dXt) |φt 〉, where
|ψt 〉 = |φt 〉〈φt |φt 〉−1/2 and {Xt } is a Q-Brownian motion. The physical measure P is related
to Q through P(A) = EP[1A] = EQ[〈φt |φt 〉1A] for some event A measurable at time t, where
1A = 1 if A is true and 0 otherwise. This choice of physical probability measure is the
counterpart to the postulate of standard quantum mechanics on the outcomes of measurement
processes [6].

Note that since the state evolves according to equation (4) by the action of only the number
operator and the annihilation operator, a final state with higher energy than any of those states
contributing to the initial superposition |ψ0〉 cannot occur. This ensures that as long as the
initial state has finite energy, subsequent evolved states must also have finite energy.

We proceed by demonstrating that equation (4) preserves the norm of a state. Denoting
|dψt 〉 = d|ψt 〉 we have

d(〈ψt |ψt 〉) = 〈 dψt |ψt 〉 + 〈ψt |dψt 〉 + 〈 dψt |dψt 〉
= 〈ψt |

[
iH − 1

2λ2a†(a − āt ) + 1
2λ2(a† − āt )āt

] |ψt 〉 dt + 〈ψt |λ(a† − āt )|ψt 〉 dBt

+ 〈ψt |
[−iH − 1

2λ2(a† − āt )a + 1
2λ2(a − āt )āt

] |ψt 〉 dt + 〈ψt |λ(a − āt )|ψt 〉 dBt

+ 〈ψt |λ2(a† − āt )(a − āt )|ψt 〉 dt

= 0. (6)

For convenience we take the norm of the initial state |ψ0〉 to be unity. Further, we make the
following definitions for the conditional expectation and conditional variance of some operator
O with respect to the state |ψt 〉 at time t:

Ot = 〈ψt |O|ψt 〉 and V O
t = 〈ψt |(O† − O∗

t )(O − Ot)|ψt 〉,
and the conditional covariance of two operators O and O ′:

V O,O ′
t = 〈ψt |(O† − O∗

t )(O ′ − O ′
t )|ψt 〉.

In addition, we define the operator �Ot = O − Ot .
Let us first consider the energy of the oscillator. It is straightforward to demonstrate that

the energy process Ht = 〈ψt |H |ψt 〉 satisfies the evolution equation

dHt = −λ2ωNt dt + λω〈ψt |(a†a†a + a†aa − 2a†aāt )|ψt 〉 dBt . (7)

By integrating and taking the unconditional expectation, we infer that

EP[Ht ] = H0 − λ2EP

[∫ t

0
duωNu

]
= H0 − λ2ω

∫ t

0
du EP[Nu]. (8)

The second term on the right side is negative semi-definite. Therefore, energy is lost from the
harmonic oscillator on average at a rate determined by λ2. We demand that energy loss on a
macroscopic scale is negligible in order to conform with the energy conservation principle.
Taking the typical particle number in the state |ψt 〉 to be of order N0, we therefore require
that λ2ωN0�t � H0 for typical timescales �t . Equivalently, we may say that λ must be very
small in standard macroscopic units of time. In this limit we have that EP[Ht ] � H0, or that
the expected energy is approximately conserved. In addition, having very small λ means that
for a small number of particles, equation (4) can be accurately approximated by Schrödinger’s
equation.
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2.1. State reduction

In order to see how the state reduction mechanism works we consider the stochastic processes
at and V a

t for the conditional expectation of the annihilation operator and the associated
conditional variance:

dat = −iωat dt − 1
2λ2at dt + λ〈ψt |[(a + a†)a − 2āt a]|ψt 〉 dBt, (9)

dV a
t = −λ2{〈ψt ||�at |2|ψt 〉 + |〈ψt |[(a + a†)a − 2āt a]|ψt 〉|2} dt

+ λ〈ψt |[(a† − āt )|�at |2 + |�at |2(a − āt )]|ψt 〉 dBt . (10)

Integrating and taking the unconditional expectation of equation (10) we have

EP
[
V a

t

] = V a
0 − λ2EP

[∫ t

0
duV a

u

]
− λ2EP

[∫ t

0
du

∣∣V (a+a†),a
u

∣∣2
]

= V a
0 − λ2

∫ t

0
du EP

[
V a

u

] − λ2
∫ t

0
du EP

[∣∣V (a+a†),a
u

∣∣2]
. (11)

Since the last two terms on the right side are positive semi-definite, the unconditional
expectation of the variance of a cannot increase (i.e. V a

t is a super-martingale). If we suppose
that these terms are nonzero then EP

[
V a

t

] → 0 for large times and therefore V a
t → 0, i.e.

the state approaches an a-eigenstate. Otherwise, if for some time t we have EP
[
V a

t

] = 0 and

EP
[∣∣V (a+a†),a

t

∣∣2] = 0, then |ψt 〉 at that time must be an a-eigenstate. Note that the second of
these two conditions is also satisfied when |ψt 〉 is a position eigenstate at time t. Since these
are composed of an infinite number of infinitesimal energy mode contributions, we exclude
this possibility.

In order to estimate the characteristic timescale for state reduction, we approximate
equation (11) by freezing the stochastic terms on the right side at t = 0. In this approximation
we find

EP
[
V a

t

] − V a
0

V a
0

� −λ2

(
1 +

∣∣V (a+a†),a
0

∣∣2

V a
0

)
t. (12)

Taking V a
0 ∼ V

(a+a†),a
0 ∼ O(N0) (corresponding, for example, to a superposition between a

large excited state and the vacuum state), the reduction timescale for the variance-decreasing
process can be estimated as

τR ∼ V a
0

λ2
∣∣V (a+a†),a

0

∣∣2 ∼ 1

λ2N0
. (13)

This must be small in standard units for macroscopic objects such that macroscopic
superpositions are suppressed. For example, for an oscillator with frequency of order 1014 s−1

(corresponding to visible light), if we take N0 = 1023 and h̄ = 10−34 Js, then choosing
λ = 10−8 s−1/2 would lead to energy loss at a rate of 10−13 Js−1 and state reduction on a
timescale of order 10−7 s. For one particle (N0 = 1), energy loss is of order 10−36 Js−1 and
the reduction timescale is 1016 s (109 yrs).

Once the system enters an a-eigenstate, equation (9) reduces to

dat = (−iω − 1
2λ2

)
at dt, (14)

with solution at = a0 exp
{−iωt − 1

2λ2t
}
. The solution decays on timescale λ−2 which as

stated earlier must be very large in standard macroscopic units of time.
So far we have demonstrated that our state evolution equation (4) describes state reduction

to a coherent state on timescale τR given in equation (13). We have also shown that coherent
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states themselves will decay to the vacuum state on a very long timescale λ−2. We conclude
this subsection by confirming that stochastic probabilities match with quantum probabilities
for the outcome of a simplified measurement. Let us consider the projection operator of a
particle number eigenstate Pn = |n〉〈n|. The conditional expectation of the projection operator
Pn,t = 〈ψt |Pn|ψt 〉 obeys the evolution equation

dPn,t = λ2[(n + 1)Pn+1,t − nPn,t ] dt + λ〈ψt |(a†Pn + Pna − 2ātPn)|ψt 〉 dBt, (15)

where the terms in square brackets on the right side correspond to the background decay
mechanism occurring on timescale λ−2. These terms together are small when a given
wavepacket is sufficiently smoothly varying in n. (For example, a wavepacket centred at
n = n′ with a standard deviation in n of O(

√
n′), typically has Pn,t ∼ O(1/

√
n′) and

[Pn+1,t − Pn,t ] ∼ O(1/n′), resulting in [(n + 1)Pn+1,t − nPn,t ] ∼ O(1). These orders of
magnitude correspond to a minimum uncertainty coherent state wavepacket.)

Consider now an initial superposition state |ψ0〉 consisting of the vacuum state |0〉 and
some excited coherent state |α0〉. Suppose further that 〈0|αt 〉 � 0. We may think of this
situation as corresponding to a superposition of null and positive readings on some measuring
device.

After some time t where τR < t � λ−2 reduction has occurred to a coherent state. This
may be either the vacuum state or |αt 〉. The initial quantum probability for registering the
system in the vacuum state is Pvac,0 = 〈ψ0|Pvac|ψ0〉 where Pvac = |0〉〈0|. From equation (15)
we have (upon ignoring the terms in square brackets)

dPvac,t � λ〈ψt |(a†Pvac + Pvaca − 2ātPvac)|ψt 〉 dBt . (16)

Now taking the unconditional expectation we have

Pvac,0 � EP[Pvac,t ] � EP[1|ψt 〉=|0〉]. (17)

The final approximation results from the fact that the state at time t is either the vacuum state
or the approximately orthogonal excited coherent state |αt 〉. This relation tells us that the
initial standard quantum estimate for the probability of finding the system in the vacuum state
is equal to the stochastic probability of that outcome occurring in this model. The quantum
and stochastic probabilities for the other outcome must also be equal.

2.2. Numerical simulations

In order to confirm the reductive properties, we ran a numerical simulation of the quantum
state evolution. We considered an initial state corresponding to an equal superposition of two
a-eigenstates with eigenvalues 0 and 8 respectively. We have set the parameters to λ = 0.5
and ω = 1. This choice means we observe state reduction for small numbers of particles with
only a small degree of energy loss. Since N0 ∼ 32 we estimate the reduction timescale by
equation (13) to be τR ∼ 0.125. The decay timescale is given by λ−2 ∼ 4. These order-
of-magnitude estimates are confirmed by figures 1 and 2 which show sample paths for the
conditional expectation of energy and for the conditional variance in a respectively. We see
that the state evolves into either one of the two possible coherent states. One of these states is
the vacuum state, the other corresponds to the (slowly decaying) non-vacuum coherent state.

In addition we have estimated the probabilities of the two possible outcomes by running
100 sample paths. We find probabilities of 0.47 for the vacuum state and 0.53 for the non-
vacuum state (the standard deviation of this estimate is 0.1).
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Figure 1. Conditional expectation of energy. The plot shows five realized paths for an initial state
corresponding to an equal superposition of two coherent states with expected energies 0.5 and 64.5
respectively. In the cases where the state reduces to the excited coherent state we note a slow decay
in energy. This is expected to occur on a timescale of order λ−2 ∼ 4 in this example ( λ = 0.5 and
ω = 1).

Figure 2. Conditional variance of the annihilation operator. The sample paths correspond to those
in figure 1 ( λ = 0.5 and ω = 1).

3. Relativistic quantum field theory

Here we generalize the analysis of the previous section to the case of relativistic quantum field
theory. (For a discussion of the conceptual issues surrounding the formulation of relativistic
state reduction models, see [14, 24–26].) Given that experimental evidence conforms to the
principle of relativistic invariance, it is natural to require this condition of our model. This has
been a longstanding problem in the field of dynamical state reduction models. The reason is
that while state reduction can be modelled easily enough, by coupling a stochastic process to
a quantum field we generate energy at an infinite rate. We will resolve this issue by coupling
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t

dω

σ

σ ’

x

x

x

Figure 3. Evolution between space-like hyper-surfaces σ and σ ′.

only the annihilation operators of the quantum field to the stochastic process (as in the case of
the harmonic oscillator discussed in the previous section). This will ensure that energy cannot
be created from the vacuum.

A natural formulation of relativistic quantum field theory for the consideration of an
evolving state is the one due to Tomonaga and Schwinger [13, 22, 23]. We write the
Hamiltonian density at spacetime point x in the form H(x) = H0(x) + Hint(x), where H0

is the free-field Hamiltonian and Hint is an interaction term. Then evolution of the quantum
state is described by the Tomonaga equation:

i
δ

δσ (x)
|
(σ)〉 = Hint(x)|
(σ)〉. (18)

The state is defined on some space-like three-surface σ , and functional differentiation is defined
with respect to some point x lying on σ . Given two space-like surfaces σ and σ ′ differing only
by some infinitesimal spacetime volume dωx at point x (see figure 3), the functional derivative
can be expressed as

δ|
(σ)〉
δσ (x)

= lim
σ ′→σ

|
(σ ′)〉 − |
(σ)〉
dωx

. (19)

Equation (18) describes the evolution of the quantum state in terms of incremental time-like
advancements of individual points on a space-like surface. The operator Hint must be a
scalar quantity in order that equation (18) has a relativistically invariant form. In addition,
the constraint [Hint(x),Hint(x

′)] = 0 for space-like separated x and x ′ is imposed so that
the ordering of points undergoing time-like advancement is irrelevant. We will consider the
possibility of a definite ordering of all spacetime points, allowing us to break the commutation
constraint.

In differential form the Tomonaga equation can be represented as follows

dx |
(σ)〉 = −iHint(x)|
(σ)〉 dωx. (20)

We proceed by generalizing this equation to a diffusion equation.

3.1. Field state diffusion equation

Previous approaches to modifying Schrödinger field dynamics have generally involved the
inclusion of a white-noise field term in the Tomonaga equation (see e.g. [6]). Here we opt
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to formulate our model in terms of a Gaussian process. We begin by defining dWx to be an
increment of some real Q-Brownian motion with mean zero and covariance given by

EQ[dWx dWx ′ ] = δx,x ′ dωx. (21)

We may think of the Gaussian random variable W(σ) defined on some surface σ and of
dWx as the incremental difference in W between two surfaces differing by some infinitesimal
spacetime volume at point x.

We extend the differential Tomonaga equation to include a stochastic term as follows:

dx |�(σ)〉 = (− 1
2λ2A†(x)A(x) dωx + λA(x) dWx

)|�(σ)〉. (22)

Here A(x) is a scalar operator to be specified.
When using the Tomonaga picture, in order to set the initial conditions we must specify an

initial state on a definite initial space-like surface σi. If we then wish to calculate the expected
state at a later localized region in spacetime, we must specify a final space-like surface σf

which includes this region. To describe evolution from the initial state on σi to the final state
on σf we could choose any causally ordered set of intermediate space-like surfaces (we write
σ ′ > σ if σ ′ is nowhere in the past of any point on σ ). Each surface will differ by only an
incremental spacetime volume dωx from its neighboring surfaces in the ordering. If evolution
of the state from the initial to the final surface is independent of the ordering of intermediate
surfaces we can say that it is independent of any specific local frame. This is true of equation
(22) provided that [A(x),A(x ′)] = [A(x),A†(x ′)] = 0 for space-like separated x and x ′.

Assuming the usual rules of Itô calculus we find

dx(〈�(σ)|�(σ)〉) = 2λ〈Ā(x)〉σ 〈�(σ)|�(σ)〉 dWx, (23)

where Ā(x) = 1
2 (A(x)+A†(x)), 〈·〉σ = 〈
(σ)|·|
(σ)〉 and |
(σ)〉 = |�(σ)〉〈�(σ)|�(σ)〉− 1

2

is the normalized state. The solution to this equation can be formally written as

〈�(σf)|�(σf)〉 = 〈�(σi)|�(σi)〉 + 2λ

∫ σf

σi

〈Ā(x)〉σ 〈�(σ)|�(σ)〉 dWx (24)

= 〈�(σi)|�(σi)〉 exp

{
2λ

∫ σf

σi

〈Ā(x)〉σ dWx − 2λ2
∫ σf

σi

〈Ā(x)〉2
σ dωx

}
. (25)

We next introduce the physical measure P such that for a random variable X, measurable on
surface σf , the P-expectation is given by

EP[X] = EQ

[ 〈�(σf)|�(σf)〉
〈�(σi)|�(σi)〉 X

]
. (26)

The physical measure P assigns physical probabilities to possible measurable outcomes. We
have from equation (24) that P(�) = EP[1] = 1 as required of a probability measure. Also,
as a consistency check, given the tower law of Q-expectation, it can be shown that the tower
law of P-expectation also holds:

EP[X] = EP[EP[X|σ ]]. (27)

Here σ is some surface such that σf > σ > σi, and by conditioning on σ we mean that all
dWx to the past of σ are known. It therefore makes no difference for the final outcome if we
condition on some intermediate surface before taking the expectation at σi. The application
of equation (26) therefore provides a consistent way of assigning physical probabilities to
outcomes. This allows us to describe state evolution in terms of the Q-Brownian motion
before using the P-measure to determine physical probabilities at the end of the calculation.

We can also express the state evolution equation directly in terms of a P-Brownian
motion as follows. First we choose a definite sequence of space-like hyper-surfaces {σ } (with
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σf > σ > σi) to support our state evolution. We then define the process B(σ) by the solution
to the following stochastic equation

dBx = dWx − 2λ〈Ā(x)〉σ dωx. (28)

Here σ is different from its succeeding surface only by some incremental spacetime volume
about x. It can be shown that EP[dBx] = 0 and EP[dBx dBx ′ ] = δx,x ′ dωx . Therefore dBx is
an increment of P-Brownian motion. Finally, writing equation (22) in terms of the normalized
state |
(σ)〉 and the P-Brownian motion dBx we find

dx |
(σ)〉 = (α(x, σ ) dωx + β(x, σ ) dBx)|
(σ)〉, (29)

where (cf equation (4))

α(x, σ ) = − 1
2λ2(A†(x) − 〈Ā(x)〉σ )A(x) + 1

2λ2(A(x) − 〈Ā(x)〉σ )〈Ā(x)〉σ , (30)

β(x, σ ) = λ(A(x) − 〈Ā(x)〉σ ). (31)

In the case where [A(x),A(x ′)] = [A(x),A†(x ′)] = 0 for space-like separated x and x ′,
this evolution equation must be independent of the choice {σ } by construction. On the other
hand, if we allow for [A(x),A(x ′)] = [A(x),A†(x ′)] �= 0, the state evolution described by
equation (22) is {σ }-dependent and our choice of sequence {σ } must be specific if the model
is to give unambiguous results. Equation (29) retains its relativistically invariant form so that
all observers will agree on outcomes.

We will be forced to choose operators A(x) that do not commute at space-like separation
and therefore we must specify a fixed sequence of evolving space-like hyper-surfaces. This
might seem a significant compromise; however, it is not clear that a freedom to choose any
space-like surface is desirable in a model of quantum state reduction. Consider an entangled
EPR pair where one particle is measured at a space-like separation from a region where we
wish to consider the state of the other particle. The state of the unmeasured particle depends
on whether the surface on which it is defined has the measurement event in its past or future.
Since we are free to choose this surface, the state of the unmeasured particle is ambiguous. As
is argued in [14] this problem only persists for the state reduction timescale so it can be ignored
for macroscopic objects. However, it is a difficulty if we intend for our state to represent the
microscopic world unambiguously.

If nature were to choose the specific sequence {σ } this problem could be avoided. We
would have no freedom to choose the surface upon which the final state is defined. We do not
suggest a rule for the choice. We only suggest that relativistic invariance could be recovered in
expectation by assuming that future space-like surfaces are chosen at random from a uniform
distribution over the space of all future space-like surfaces. Alternatively, we might simply be
content to allow our model to break relativistic invariance in its description of state reduction.
For example, the evolving surfaces could correspond to the constant time surfaces in the
co-moving frame of the Universe or to a local frame defined by the matter content of the state.

Without a rule for choosing the sequence of surfaces, we must quantify the effect of
making different choices. In fact, we can demonstrate that the imposed ordering of spacetime
points has a negligible effect in a perturbative calculation scheme involving the coupling
parameter λ. Given some operator O such that dxO = 0 in the Tomonaga picture, we can use
(29) to determine the dynamical equation satisfied by its conditional expectation as

dx〈O〉σ = 〈α†(σ )O + Oα(σ) + β†(σ )Oβ(σ)〉σ dωx + 〈β†(σ )O + Oβ(σ)〉σ dBx, (32)

(where the x dependence of α and β is assumed). Integrating and taking the unconditional
expectation, we find

EP[〈O〉σf ] = 〈O〉σi + EP

[∫ σf

σi

〈α†(σ )O + Oα(σ) + β†(σ )Oβ(σ)〉σ dωx

]
. (33)
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Since α ∼ O(λ2) and β ∼ O(λ), we can expand EP
[〈O〉σf

]
perturbatively in λ to second

order by freezing the stochastic state at the initial surface σi, that is,

EP[〈O〉σf ] � 〈O〉σi + EP

[∫ σf

σi

〈α†(σi)O + Oα(σi) + β†(σi)Oβ(σi)〉σi dωx

]
. (34)

In this approximation, even when the A(x)-operators do not commute at space-like separation,
the result only depends on the choice of initial and final surfaces, and not on any ordering of
spacetime points within the integrated region. The choice of intermediate surfaces will have
no effect. We will use equivalent frozen state approximations in subsequent sections. The
results will be Lorentz invariant in the sense outlined here.

We end this subsection by commenting on the ‘Free Will Theorem’ [27] which claims to
show that relativistic dynamical reduction models are incompatible with the experimenter’s
free will to decide which observable to measure. In subsequent responses [28, 29], it has been
argued that the resolution of this conflict can be found in nonlocality (see also [30]). Certainly
equation (29) is explicitly nonlocal through its dependence on the quantum state over the
entire space-like surface σ . However, as pointed out by ’t Hooft [31], for models of this type
we should reconsider our notion of ‘free will’. For example, given some definite quantum
state defined on some initial surface σi, and given some realized B(σ) for every space-like
surface σ to the future of σi, then the future quantum state is determined. This future quantum
state should describe all matter including the experimenter’s behaviour. If we require free will
in this framework, it can only result from an inability to determine the precise initial state [31].

3.2. Scalar field theory

Having established the covariant form of the theory, we now focus on a particular frame with
space-like surfaces chosen to be the constant time surfaces. We have

|d
(t)〉 =
∫

x
dx |
(t)〉 =

∫
x

dx(α(x) dt + β(x) dBt(x))|
(t)〉, (35)

with EP[dBt(x) dBt ′(x′)] = δ3(x − x′)δt,t ′ dt . We use the integration subscript to avoid
confusion over which variables are integrated over. In this frame, time-independent operators
in the Schrödinger picture are related to time-dependent operators in the Tomonaga picture
by the unitary transformation O(t) = exp{iH0t}O exp{−iH0t}, where H0 is the free-field
Hamiltonian.

We consider a real scalar field ϕ defined in the Tomonaga picture by

ϕ(x) =
∫

dp√
2ωp

{exp (ip · x − iωpt)a(p) + exp (−ip · x + iωpt)a
†(p)}, (36)

with free Hamiltonian

H0 =
∫

dx
{

1
2 (∂tϕ(x))2 + 1

2∇ϕ(x) · ∇ϕ(x) + 1
2m2ϕ2(x)

}
=

∫
dpωp

{
a†(p)a(p) + 1

2δ3(0)
}
, (37)

where ωp =
√

p2 + m2, and the creation and annihilation operators satisfy the canonical
commutation relations [a(p), a†(p′)] = δ3(p − p′) and [a(p), a(p′)] = 0, respectively. The
positive and negative frequency components of the field are given by

ϕ+(x) =
∫

dp√
2ωp

exp (ip · x − iωpt)a(p), (38)
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ϕ−(x) =
∫

dp√
2ωp

exp (−ip · x + iωpt)a
†(p), (39)

where ϕ = ϕ+ + ϕ−. We define

α = − 1
2λ2

(
ϕ− − 1

2 〈ϕ〉t
)
ϕ+ + 1

2λ2
(
ϕ+ − 1

2 〈ϕ〉t
)

1
2 〈ϕ〉t (40)

β = λ
(
ϕ+ − 1

2 〈ϕ〉t
)
. (41)

Here 〈·〉t = 〈
(t)| · |
(t)〉. The constant parameter λ in this model has dimension, [time]−1.
We ignore for now any other possible Hamiltonian interaction terms. Since ϕ+ and ϕ− do not
commute, our choice of constant-time surfaces must be considered special. Although, as we
have seen in the previous section, by using the frozen state approximation, our results will be
independent of any specific local frame.1

In the same manner as (6) we can demonstrate that

d〈
(t)|
(t)〉 = 0, (42)

so without loss of generality we may set 〈
(t)|
(t)〉 = 1 with the state remaining normalized
for all time.

Given some generic operator O(t) in the Tomonaga picture, we may ask how its
conditional expectation evolves. We find (cf [15])

d〈O〉t = 〈 dO〉t +
∫

x
dx〈α†O + Oα + β†Oβ〉t dt +

∫
x

dx〈β†O + Oβ〉t dBt(x), (43)

where dependences on spatial coordinates are understood. The first term on the right side
results from the standard unitary evolution of the operator O described by the free Hamiltonian.

Similarly, we can write an evolution equation for the conditional variance of an
operator. Recalling that �Ot = O − 〈O〉t and that the conditional variance is given by
Vt [O] = 〈|�Ot |2〉t , we find (again cf [15])

dVt [O] = 〈
dO†�Ot + �O

†
t dO

〉
t

+
∫

x
dx〈α†|�Ot |2 + |�Ot |2α + β†|�Ot |2β〉t dt

−
∫

x
dx〈β†O† + O†β〉t 〈β†O + Oβ〉t dt

+
∫

x
dx〈β†|�Ot |2 + |�Ot |2β〉t dBt(x). (44)

Note that the third term on the right side of equation (44) is negative semi-definite. This term
is responsible for the variance reduction which we can use to demonstrate state reduction (see
next subsection).

We may apply equation (43) to the total energy of the quantum field. Ignoring the vacuum
energy and interactions, this is given by

H =
∫

dp ωpa
†(p)a(p). (45)

We find after some calculation that

d〈H 〉t = − 1
2λ2〈N〉t dt +

∫
x

dx〈β†H + Hβ〉t dBt(x), (46)

1 An alternative suggestion that we have explored is to remove the on-shell constraint from the field creation and
annihilation operators. This enables us to construct local scalar field operators which do commute at space-like
separation. The hope is that a state with only on-shell excitations might enforce the on-shell condition. However, we
have been unable to prevent off-shell excitations from occurring (including faster-than-light modes).
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where

N =
∫

dp a†(p)a(p). (47)

Integrating and taking the unconditional expectation of the energy process at time t we have

EP[〈H 〉t ] = 〈H 〉0 − 1
2λ2

∫ t

0
du EP[〈N〉u], (48)

(cf equation (8)). Since 〈N〉t is nonnegative, it follows from (48) that energy is lost on average
as a result of coupling the quantum field to a classical stochastic process. However, the energy
loss is finite and can be made negligible by an appropriate choice of λ. This is to be contrasted
with some of the previous attempts to construct a relativistic state reduction model [13–15],
where the energy density is seen to increase at an infinite rate. The reason that we do not
see an infinite rate of energy density creation can be traced back to the fact that the classical
stochastic process is not coupled to the particle creation operator and therefore cannot drive
particle creation from the vacuum.

Stochastic movements in the energy process will cease when the quantum state is
an eigenstate of the operator ϕ+. When this occurs, the final term on the right side of
equation (46) goes to zero.

We can approximate equation (48) to O(λ2) by freezing the stochastic terms on the right
side at time t = 0. This gives

EP[〈H 〉t ] � 〈H 〉0 − 1
2λ2〈N〉0t (49)

This result depends on the initial state and on the integrated region of spacetime between
the initial and final space-like hyper-surfaces. However, no ordering of spacetime points is
required.

3.3. Quantum field state reduction

To see the reductive properties, we consider the particle annihilation operator a(p). Using
equation (43) we find

d〈a(p)〉t = −iωp〈a(p)〉t dt − λ2

4ωp
〈a(p)〉t dt + λ

∫
x

dx〈(ϕ − 〈ϕ〉t ) a(p)〉t dBt(x). (50)

Similarly using equation (44) and taking the unconditional expectation we have

EP[Vt [a(p)]] = V0[a(p)] − λ2

2ωp
EP

[∫ t

0
duVu[a(p)]

]

− λ2EP

[∫ t

0
du

∫
x

dx|〈(ϕ − 〈ϕ〉t ) a(p)〉t |2
]

= V0[a(p)] − λ2

2ωp

∫ t

0
du EP[Vu[a(p)]]

− λ2
∫ t

0
du EP

[∫
x

dx|〈(ϕ − 〈ϕ〉t ) a(p)〉t |2
]

. (51)

Again we find that the conditional variance for the annihilation operator is a super-martingale.
The expected variance decreases with time and the quantum state evolves towards an eigenstate
of the annihilation operator. If we freeze the stochastic terms on the right side of equation (51),
we find

EP[Vt [a(p)]] � V0[a(p)] − λ2

2ωp
V0[a(p)]t − λ2

∫ t

0
du

∫
x

dx|〈(ϕ − 〈ϕ〉0) a(p)〉0|2. (52)
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Note that, as in equation (49), the right side is independent of the ordering of spacetime points
and therefore independent of the intermediate space-like hyper-surfaces we have chosen to
support our state evolution. We may estimate the timescale for collapse in the same manner
as equations (12) and (13) by taking V0[a(p)] ∼ N0(p) = 〈a†(p)a(p)〉0 and∫

x
dx|〈(ϕ − 〈ϕ〉t ) a(p)〉t |2 ∼

∫
dp′ N0(p′)N0(p)

2ωp′
, (53)

from which we find

τR ∼ 1

λ2
∫

dp′N0(p′)/(2ωp′)
. (54)

As in the harmonic oscillator case, it is the third term on the right side of equation (51)
that leads to variance reduction for macroscopic energy scales. The reduction time is inversely
proportional to the total number of excitations in all modes. This will lead to rapid reduction
for large scale excitations. Each mode tends towards a coherent state. As this occurs, we
expect that the field tends towards classical behaviour.

3.4. Fermionic state reduction

Here we introduce a fermionic field coupled to our proposed scalar field theory in order to
consider an induced state reduction in the fermionic sector. To see how this works let us set λ

to zero for now and consider an interaction Hamiltonian of the type

Hint(t) =
∫

x
dx j (x)ϕ(x). (55)

Here j is some Hermitian current operator associated with the fermionic matter field. From
equation (36) we have

Hint(t) =
∫

x
dx j (x)

∫
dp√
2ωp

{exp (ip · x − iωpt)a(p) + exp (−ip · x + iωpt)a
†(p)}

=
∫

dp√
2ωp

{j †(p, t) exp (−iωpt)a(p) + j (p, t) exp (iωpt)a
†(p)}. (56)

Furthermore, we can formally solve the Tomonaga equation to find

|
(t)〉 = exp

{
−i

∫ t

0
duHint(u)

}
|
(0)〉. (57)

Now suppose that the fermionic state undergoes some spatial transfer of charge such that a
pulse of current occurs. If the fermionic state is a j -eigenstate, we have

|
(t)〉 = exp

{∫
dp(α(p, t)a†(p) − α∗(p, t)a(p))

}
|
(0)〉, (58)

where the complex number α is given by

α(p, t) = −i
∫ t

0
du

j (p, u)√
2ωp

exp(iωpu), (59)

and j (p, t) is the current eigenvalue at time t. Using the commutation relations for the creation
and annihilation operators, and assuming that the initial ϕ state is unexcited, we find

a(p′)|
(t)〉 = a(p′) exp

{∫
dp(α(p, t)a†(p) − α∗(p, t)a(p))

}
|
(0)〉

= exp

{∫
dp(α(p, t)a†(p) − α∗(p, t)a(p))

}
(a(p′) + α(p′, t))|
(0)〉

= α(p′, t)|
(t)〉. (60)
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The final state is a ϕ-coherent state with eigenvalue α (cf section 3.4 in [21]). This demonstrates
that coherent states in ϕ are associated with j -eigenstates in the matter field. Reduction to a
ϕ-coherent state should therefore induce reduction to a j -eigenstate in the fermionic sector.

It is tempting to associate ϕ with a gauge field such as the photon field or some proposed
graviton field. The current j would then relate to a conserved charge, e.g. electric charge
or energy–momentum. Such charge densities are a natural description of macroscopic
observables.

4. Conclusions

The key advance of this paper has been to develop an alternative model of state reduction in
relativistic quantum field theory which does not suffer from the infinite rates of energy density
increase seen in some previous proposals. We have outlined a model requiring just one extra
parameter in addition to those of standard quantum theories in order to simultaneously describe
the quantum behaviour of individual excitations and the definite behaviour of macroscopic
objects.

In our approach, by having no coupling between the classical stochastic field and the
particle creation operator, we ensure that the evolution equation cannot randomly create
particles from the vacuum. Our model features only a coupling between the stochastic field
and the particle annihilation operator. This is appealing for two further reasons. First, it leads
to a reduction to coherent states. As coherent states saturate the bound of the Heisenberg
uncertainty relation, they make a natural choice as a quantum counterpart to an idealized
classical state. Second, by applying this mechanism to a bosonic field coupled to a fermionic
field, we can induce state reduction to some charge density basis in the fermionic sector. The
model requires the specification of a preferred set of space-like hyper-surfaces supporting
the time-like state evolution. This breaks relativistic invariance. However, our perturbative
calculations show no deviation from relativistic invariance to second order in λ.

The ideas presented in this paper could be applied to the photon field or to a proposed
graviton field in order to see state reduction to a conserved electric charge or energy–
momentum basis in the associated matter fields. Since the model predicts an energy loss
which could be significant in high-density highly accelerating matter environments, there may
be the possibility of experimental investigation, e.g., by looking at the decay of high intensity
electromagnetic waves or through the detection of gravitational waves.
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